Pages

Jumat, 30 Juli 2010

Hidrokarbon Termasuk Senyawa Karbon

Senyawa hidrokarbon terdiri atas karbon dan hidrogen. Bagian dari ilmu kimia yang membahas senyawa hidrokarbon disebut kimia karbon. Dulu ilmu kimia karbon disebut kimia organik, karena senyawa-senyawanya dianggap hanya dapat diperoleh dari tubuh makhluk hidup dan tidak dapat disintesis dalam pabrik. Akan tetapi sejaka Friedrich Wohler pada tahun 1928 berhasil mensintesis urea (suatu senyawa yang terdapat dalam air seni) dari senyawa anorganik, amonium sianat dengan jalan memanaskan amonium sianat tersebut.

O
||
NH4+CNO- ® H2N - C - NH2

Begitu keberhasilan Wohler diketahui, banyaklah sarjana lain yang mencoba membuat senyawa karbon dari senyawa anorganik. Lambat laun teori tentang daya hidup hilang dan orang hanya menggunakan kimia organik sebagai nama saja tanpa disesuaikan dengan arti yang sesungguhnya. Sejaka saat itu banyak senyawa karbon berhasil disintesis dan hingga sekarang lebih dari 2 juta senyawa karbon dikenal orang dan terus bertambah setiap harinya. Apa sebabnya jumlah senyawa karbon sedemikian banyak bila dibandingkan dengan jumlah senyawa anorganik yang hanya sekitar seratus ribuan ?

Selain perbedaan jumlah yang sangat mencolok yang menyebabkan kimia karbon dibicarakan secara tersendiri , karena memang terdapat perbedaan yang sangat besar antara senyawa karbon dan senyawa anorganik seperti yang dituliskan berikut ini.


Senyawa karbon
Senyawa anorganik
  • membentuk ikatan kovalen
  • dapat membentuk rantai karbon
  • non elektrolit
  • reaksi berlangsung lambat
  • titik didih dan titik lebur rendah
  • larut dalam pelarut organik
  • membentuk ikatan ion
  • tidak dapat membentuk rantai karbon
  • elektrolit
  • reaksi berlangsung cepat
  • titik didih dan titik lebur tinggi
  • larut dalam pelarut pengion

Hidrokarbon merupakan segolongan senyawa yang banyak terdapat di alam sebagai minyak bumi. Indonesia banyak menghasilkan minyak bumi yang mempunyai nilai ekonomi tinggi, diolah menjadi bahan bakar motor, minyak pelumas, dan aspal.

Teori Asam Basa

A. MENURUT ARRHENIUS

Asam ialah senyawa yang dalam larutannya dapat menghasilkan ion H+.

Basa ialah senyawa yang dalam larutannya dapat menghasilkan ion OH-.
Contoh:

1) HCl(aq)    ®  H+(aq) + Cl-(aq)
2) NaOH(aq) ®  Na+(aq) + OH-(aq)


B. MENURUT BRONSTED-LOWRY

Asam ialah proton donor, sedangkan basa adalah proton akseptor.

Contoh:

1) HAc(aq) + H2O(l)   «
     H3O+(aq) + Ac-(aq)
    asam-1    basa-2        asam-2       basa-1

HAc dengan Ac- merupakan pasangan asam-basa konyugasi.
H3O+ dengan H2O merupakan pasangan asam-basa konyugasi.

2) H2O(l) + NH3(aq)   «     NH4+(aq) + OH-(aq)
    asam-1   basa-2          asam-2     basa-1

H2O dengan OH- merupakan pasangan asam-basa konyugasi.
NH4+ dengan NH3 merupakan pasangan asam-basa konyugasi.

Pada contoh di atas terlihat bahwa air dapat bersifat sebagai asam (proton donor) dan sebagai basa (proton akseptor). Zat atau ion atau spesi seperti ini bersifat ampiprotik (amfoter).

Garam Yang Terbentuk Dari Asam Lemah Dan Basa Lemah

Untuk jenis garam ini larutannya selalu bersifat basa (pH > 7), dan dalam perhitungan digunakan persamaan:
[OH-] = Ö Kh . Cg
dimana:
Kh = Kw/Ka
Kh = konstanta hidrolisis
Jika kita ingin mencari nilai pH-nya secara langsung, dipergunakan persamaan:
pH = 1/2 (pKw + pKa + log Cg)

Contoh:
Hitunglah pH larutan dari 100 ml 0.02 M NaOH dengan 100 ml 0.02 M asam asetat ! (Ka = 10-5).
Jawab:
NaOH + CH3COOH ®   CH3COONa + H2O
- mol NaOH = 100/1000 x 0.02 = 0.002 mol
- mol CH3COOH = 100/1000 x 0.02 = 0.002 mol
Karena mol basa yang direaksikannya sama dengan mol asam yang direaksikan, maka tidak ada yang tersisa, yang ada hanya mol garam (CH3COONa) yang terbentuk.
- mol CH3COONa = 0.002 mol (lihat reaksi)
- Cg = 0.002 mol/200 ml = 0.002 mol/0.2 liter = 0.01 M = 10-2 M
- Nilai pH-nya akan bersifat basa (karena garamnya terbentuk dari asam lemah dengan basa kuat), besarnya:

pH = 1/2 (pKw + pKa + log Cg)
= 1/2 (14 + 5 + log 10-2)
= 1/2 (19 - 2)
= 8.5

Garam Yang Terbentuk Dari Asam Kuat Dan Basa Lemah

Karena untuk jenis ini garamnya selalu bersifat asam (pH < 7) digunakan persamaan:
[H+] = Ö Kh . Cg
dimana :
Kh = Kw/Kb
Kh = konstanta hidrolisis
Jika kita ingin mencari nilai pH-nya secara langsung, dipergunakan persamaan:
pH = 1/2 (pKW - pKb - log Cg)

Contoh:
Hitunglah pH dari 100 ml larutan 0.1 M NH4Cl ! (Kb = 10-5)
Jawab:
NH4Cl adalah garam yang bersifat asam, sehingga pH-nya kita hitung secara langsung.
pH = 1/2 (pKw - pKb - log Cg)
= 1/2 (-log 10-14 + log 10-5 - log 10-1)
= 1/2 (14 - 5 + 1)
= 1/2 x 10
= 5

Hidrolisis

Hidrolisis adalah terurainya garam dalam air yang menghasilkan asam atau basa.

ADA EMPAT JENIS GARAM, YAITU :

1. Garam yang terbentuk dari reaksi asam kuat dengan basa kuat (misalnya NaCl, K2SO4 dan lain-lain) tidak mengalami hidrolisis. Untuk jenis garam yang demikian nilai pH = 7 (bersifat netral).

2. Garam yang terbentuk dari reaksi asam kuat dengan basa lemah (misalnya NH4Cl, AgNO3 dan lain-lain) hanya kationnya yang terhidrolisis (mengalami hidrolisis parsial). Untuk jenis garam yang demikian nilai pH < 7 (bersifat asam).

3. Garam yang terbentuk dari reaksi asam lemah dengan basa kuat (misalnya CH3COOK, NaCN dan lain-lain) hanya anionnya yang terhidrolisis (mengalami hidrolisis parsial). Untuk jenis garam yang demikian nilai pH > 7 (bersifat basa).

4. Garam yang terbentuk dari reaksi asam lemah dengan basa lemah (misalnya CH3COONH4, Al2S3 dan lain-lain) mengalami hidrolisis total (sempurna). Untuk jenis garam yang demikian nilai pH-nya tergantung harga Ka den Kb.

Larutan Buffer

Larutan buffer adalah:
a. Campuran asam lemah dengan garam dari asam lemah tersebut.
Contoh:
- CH3COOH dengan CH3COONa
- H3PO4 dengan NaH2PO4
b. Campuran basa lemah dengan garam dari basa lemah tersebut.
Contoh:
- NH4OH dengan NH4Cl
Sifat larutan buffer:
- pH larutan tidak berubah jika diencerkan.
- pH larutan tidak berubah jika ditambahkan ke dalamnya sedikit asam atau basa.


CARA MENGHITUNG LARUTAN BUFFER
1. Untuk larutan buffer yang terdiri atas campuran asam lemah dengan garamnya (larutannya akan selalu mempunyai pH < 7) digunakan rumus:
[H+] = Ka. Ca/Cg
pH = pKa + log Ca/Cg
dimana:
Ca = konsentrasi asam lemah
Cg = konsentrasi garamnya
Ka = tetapan ionisasi asam lemah

Contoh:
Hitunglah pH larutan yang terdiri atas campuran 0.01 mol asam asetat dengan 0.1 mol natrium Asetat dalam 1 1iter larutan !
Ka bagi asam asetat = 10-5

Jawab:
Ca = 0.01 mol/liter = 10-2 M
Cg = 0.10 mol/liter = 10-1 M

pH= pKa + log Cg/Ca = -log 10-5 + log-1/log-2 = 5 + 1 = 6
 
2. Untuk larutan buffer yang terdiri atas campuran basa lemah dengan garamnya (larutannya akan selalu mempunyai pH > 7), digunakan rumus:
[OH-] = Kb . Cb/Cg
pOH = pKb + log Cg/Cb
dimana:
Cb = konsentrasi base lemah
Cg = konsentrasi garamnya
Kb = tetapan ionisasi basa lemah

Contoh:
Hitunglah pH campuran 1 liter larutan yang terdiri atas 0.2 mol NH4OH dengan 0.1 mol HCl ! (Kb= 10-5)
Jawab:
NH4OH(aq) + HCl(aq)  ®   NH4Cl(aq) + H2O(l)
mol NH4OH yang bereaksi = mol HCl yang tersedia = 0.1 mol
mol NH4OH sisa = 0.2 - 0.1 = 0.1 mol
mol NH4Cl yang terbentuk = mol NH40H yang bereaksi = 0.1 mol
Karena basa lemahnya bersisa dan terbentuk garam (NH4Cl) maka campurannya akan membentuk
Larutan buffer.

Cb (sisa) = 0.1 mol/liter = 10-1 M
Cg (yang terbentuk) = 0.1 mol/liter = 10-1 M
pOH = pKb + log Cg/Cb = -log 10-5 + log 10-1/10-1 = 5 + log 1 = 5

pH = 14 - p0H = 14 - 5 = 9

Menyatakan pH Larutan Basa

Prinsip penentuan pH suatu larutan basa sama dengan penentuan pH larutam asam, yaitu dibedakan untuk basa kuat dan basa lemah.
1. pH Basa Kuat Untuk menentukan pH basa-basa kuat (a = 1), maka terlebih dahulu dihitung nilai pOH larutan dari konsentrasi basanya.
Contoh:
a. Tentukan pH dari 100 ml larutan KOH 0.1 M !
b. Hitunglah pH dari 500 ml larutan Ca(OH)2 0.01 M !

Jawab:
a. KOH(aq) ®  K+(aq) + OH-(aq)
[OH-] = [KOH] = 0.1 = 10-1 M
pOH = - log 10-1 = 1
pH = 14 - pOH = 14 - 1 = 13

b. Ca(OH)2(aq) ®  Ca2+(aq) + 2 OH-(aq)
[OH-1] = 2[Ca(OH)2] = 2 x 0.01 = 2.10-2 M
pOH = - log 2.10-2 = 2 - log 2
pH = 14 - pOH = 14 - (2 - log 2) = 12 + log 2


2. pH Basa Lemah
Bagi basa-basa lemah, karena harga derajat ionisasinya ¹ 1, maka untuk menyatakan konsentrasi ion OH- digunakan rumus:
[OH-] = Ö (Cb . Kb)
dimana:
Cb = konsentrasi basa lemah
Kb = tetapan ionisasi basa lemah

Contoh:
Hitunglah pH dari 100 ml 0.001 M larutan NH4OH, jika diketahui tetapan ionisasinya = 10-5 !
Jawab:
[OH-] = Ö (Cb . Kb) = 10-3 . 10-5 = 10-4 M
pOH = - log 10-4 = 4
pH = 14 - pOH = 14 - 4 = 10

Menyatakan pH Larutan Asam

Untuk menyatakan nilai pH suatu larutan asam, maka yang paling awal harus ditentukan (dibedakan) antara asam kuat dengan asam lemah.
1. pH Asam Kuat

Bagi asam-asam kuat (
a = 1), maka menyatakan nilai pH larutannya dapat dihitung langsung dari konsentrasi asamnya (dengan melihat valensinya).

Contoh: 

1. Hitunglah pH dari 100 ml larutan 0.01 M HCl !

Jawab:

HCl(aq) ®  H+(aq) + Cl-(aq)
[H+] = [HCl] = 0.01 = 10-2 M
pH = - log 10-2 = 2

2. Hitunglah pH dari 2 liter larutan 0.1 mol asam sulfat !

Jawab:

H2SO4(aq) ®  2 H+(aq) + SO42-(aq)
[H+] = 2[H2SO4] = 2 x 0.1 mol/2.0 liter = 2 x 0.05 = 10-1 M
pH = - log 10-1 = 1

 
2. pH Asam Lemah
Bagi asam-asam lemah, karena harga derajat ionisasinya ¹ 1 (0 < a < 1) maka besarnya konsentrasi ion H+ tidak dapat dinyatakan secara langsung dari konsentrasi asamnya (seperti halnya asam kuat). Langkah awal yang harus ditempuh adalah menghitung besarnya [H+] dengan rumus
[H+] = Ö ( Ca . Ka)
dimana:
Ca = konsentrasi asam lemah
Ka = tetapan ionisasi asam lemah

Contoh:
Hitunglah pH dari 0.025 mol CH3COOH dalam 250 ml larutannya, jika diketahui Ka = 10-5
Jawab:
Ca = 0.025 mol/0.025 liter = 0.1 M = 10-1 M
[H+] = Ö
(Ca . Ka) = 10-1 . 10-5 = 10-3 M
pH = -log 10-3 = 3

Pendahuluan PH

Besarnya konsentrasi ion H+ dalam larutan disebut derajat keasaman.
Untuk menyatakan derajat keasaman suatu larutan dipakai pengertian pH.
pH = - log [H+]
Untuk air murni (25oC): [H+] = [OH-] = 10-7 mol/l
pH = - log 10-7 = 7

Atas dasar pengertian ini, ditentukan:
- Jika nilai pH = pOH = 7, maka larutan bersifat netral

- Jika nilai pH < 7, maka larutan bersifat asam

- Jika nilai pH > 7, maka larutan bersifat basa

- Pada suhu kamar: pKw = pH + pOH = 14

Pengertian Dasar

a. Partikel dasar : partikel-partikel pembentuk atom yang terdiri dari elektron, proton den neutron.

1. Proton : partikel pembentuk atom yang mempunyai massa sama dengan satu sma (amu) dan bermuatan +1.
2. Neutron : partikel pembentuk atom yang bermassa satu sma (amu) dan netral.
3. Elektron : partikel pembentuk atom yang tidak mempunyai massa dan bermuatan -1.

b. Nukleus : Inti atom yang bermuatan positif, terdiri dari proton den neutron.

c. Notasi unsur : zA A dengan X : tanda atom (unsur)

Z : nomor atom = jumlah elektron (e)
= jumlah proton (p)

A : bilangan massa = jumlah proton + neutron
Pada atom netral, berlaku: jumlah elektron = jumlah proton. Contoh :
1. Tentukan jumlah elektron, proton den neutron dari unsur 2656 Fe !
Jawab :
Jumlah elektron = jumlah proton = nomor atom = 26
Jumlah neutron = bilangan massa - nomor atom = 56 - 26 = 30
2. Berikan notasi unsur X, jika diketahui jumlah neutron = 14 dan jumlah elektron = 13 !
Jawab :
Nomor atom = jumlah elektron = 13
Bilangan massa = jumlah proton + neutron = 13 + 14 = 27

Jadi notasi unsurnya: 13 27 X


d. Atom tak netral : atom yang bermuatan listrik karena kelebihan atau kekurangan elektron bila dibandingkan dengan atom netralnya. Atom bermuatan positif bila kekurangan elektron, disebut kation.
Atom bermuatan negatif bila kelebihan elektron, disebut anion.

Contoh:
- Na+  : kation dengan kekurangan 1 elektron
- Mg2- : kation dengan kekurangan 2 elektron
- Cl   : anion dengan kelebihan 1 elektron
- O2     : anion dengan kelebihan 2 elektron


e. Isotop : unsur yang nomor atomnya sama, tetapi berbeda bilangan massanya.
Contoh: Isotop oksigen:
816 O ; 817 O ; 818 O

f. Isobar : unsur yang bilangan massanya sama, tetapi berbeda nomor atomnya.
Contoh:
2759 CO dengan 2859 Ni

g. Isoton : unsur dengan jumlah neutron yang sama.
Contoh:
613 C dengan 714 N

h. Iso elektron: atom/ion dengan jumlah elektron yang sama.
Contoh: Na+ dengan Mg2+
                
K+ dengan Ar

Ikatan Kovalen = Homopolar

Ikatan kovalen terjadi karena adanya pemakaian bersama elektron dari atom-atom yang membentuk ikatan. Pada umumnya ikatan kovalen terjadi antara atom-atom bukan logam yang mempunyai perbedaan elektronegativitas rendah atau nol. Seperti misalnya : H2, CH4, Cl2, N2, C6H6, HCl dan sebagainya.
IKATAN KOVALEN TERBAGI ATAS
1. IKATAN KOVALEN POLAR
Atom-atom pembentuknya mempunyai gaya tarik yang tidak sama terhadap pasangan elektron
persekutuannya. Hal ini terjadi karena beda keelektronegatifan kedua atomnya. Elektron persekutuan akan
bergeser ke arah atom yang lebih elektronegatif akibatnya terjadi pemisahan kutub positif dan negatif.

 
 
Dalam senyawa HCl ini, Cl mempunyai keelektronegatifan yang lebih besar dari H. sehingga pasangan elektron lebih tertarik ke arah Cl, akibatnya H relatif lebih elektropositif sedangkan Cl relatif menjadi elektronegatif.
Pemisahan muatan ini menjadikan molekul itu bersifat polar dan memiliki "momen dipol" sebesar:
T = n . l
dimana :
T = momen dipol
n = kelebihan muatan pada masing-masing atom
l  = jarak antara kedua inti atom


2. IKATAN KOVALEN NON POLAR Titik muatan negatif elektron persekutuan berhimpit, sehingga pada molekul pembentukuya tidak terjadi momen dipol, dengan perkataan lain bahwa elektron persekutuan mendapat gaya tarik yang sama.
Contoh:

Kedua atom H mempunyai harga keelektronegatifan yang sama.


Karena arah tarikan simetris, maka titik muatan negatif elektron persekutuan berhimpit.
Contoh lain adalah senyawa CO2, O2, Br2 dan lain-lain

1. Jari jari atom adalah jarak dari inti atom ke lintasan elektron terluar. - Dalam satu perioda, dari kiri ke kanan jari jari atom berkurang. - Dalam satu golongan, dari atas ke bawah jari-jari atom bertambah. - Jari-jari atom netral lebih besar daripada jari-jari ion positifnya tetapi lebih kecil dari jari-jari ion negatifnya. Contoh: jari-jari atom Cl < jari-jari ion Cl- jari-jari atom Ba > jari-jari ion Ba2+ 2. Potensial ionisasi adalah energi yang diperlukan untuk melepaskan elektron yang paling lemah/luar dari atom suatu unsur atau ion dalam keadaan gas. - Dalam satu perioda, dari kiri ke kanan potensial ionisasi bertambah. - Dalam satu golongan, dari atas ke bawah potensial ionisasi berkurang. 3. Affinitas elektron adalah besarnya energi yang dibebaskan pada saat atom suatu unsur dalam keadaan gas menerima elektron. - Dalam satu perioda, dari kiri ke kanan affinitas elektron bertambah. - Dalam satu golongan, dari atas ke bawah affinitas elektron berkurang. 4. Keelektronegatifan adalah kemampuan atom suatu unsur untuk menarik elektron ke arah intinya dan digunakan bersama. SECARA DIAGRAMATIS SIFAT-SIFAT INI DAPAT DISAJIKAN SEBAGAI BERIKUT 1. Jari-jari atom 2. Sifat logam 3. Sifat elektropositif 4. Reduktor 5. Sifat basa/oksida basa makin besar/kuat 1. Sifat elektronegatif 2. Oksidator 3. Potensial ionisasi 4. Affinitas elektron 5. Keelektronegatifan Keterangan: tanda-tanda panah di atas mempunyai arti sebagai berikut ® : artinya, dalam satu periode dari kiri ke kanan ¬ : artinya, dalam satu periode dari kanan ke kiri ¯ : artinya, dalam satu golongan dari atas ke bawah á : artinya, dalam satu golongan dari bawah ke atas

Dalam bentuk molekul dikenal adanya teori ikatan valensi. Teori ini menyatakan bahwa ikatan antar atom terjadi dengan cara saling bertindihan dari orbital-orbital atom. Elektron dalam orbital yang tumpang tindih harus mempunyai bilangan kuantum spin yang berlawanan.
Pertindihan antara dua sub kulit s tidak kuat, oleh karena distribusi muatan yang berbentuk bola, oleh sebab itu pada umumnya ikatan s - s relatif lemah.
Sub kulit "p" dapat bertindih dengan sub kulit "s" atau sub kulit "p" lainnya, ikatannya relatif lebih kuat, hal ini dikarenakan sub kulit "p" terkonsentrasi pada arah tertentu.
Contoh:
a. Molekul HF: - konfigurasi atom H : 1s1


- konfigurasi atom F: 1s2 2s2 2Px2 2py2 2pz1



Tumpang tindih terjadi antara sub kulit 1s dari atom H dengan orbital 2pz dari aton, F. Pertindihan demikian disebut pertindihan sp.

b. Molekul H2O: - konfigurasi atom H : 1s1


- konfigurasi atom O: 1s2 2s2 2Px2 2py1 2pz1



Dalam atom O terdapat 2 elektron dalam keadaan yang tidak berpasangan (orbital 2py dan 2pz), masing-masing orbital ini akan bertindihan dengan orbital 1s dari 2 atom H. Kedudukan orbital-orbital p saling tegak lurus, diharapkan sudut ikatannya sebesar 90o, tetapi karena adanya pengaruh pasangan elektron 2px, maka kedua ikatan tersebut akan tertolak dan membentuk sebesar 104.5o.

c. Molekul CH4 - konfigurasi atom H: 1s1


- konfigurasi atom C: 1s2 2s2 2Px1 2py1 2pz0



Untuk mengikat 4 atom H menjadi CH4, maka 1 elektron dari orbital 2s akan dipromosikan ke orbital 2pz, sehingga konfigurasi elektron atom C menjadi: 1s1 2s1 2px1 2py1 2pz1 . Orbital 2s mempunyai bentuk yang
berbeda dengan ketiga orbital 2p, akan tetapi ternyata kedudukan keempat ikatan C-H dalam CH4 adalah sama. Hal ini terjadi karena pada saat orbital 2s, 2px, 2py dan 2pz menerima 4 elektron dari 4 atom H, keempat orbital ini berubah bentuknya sedemikian sehingga mempunyai kedudukan yang sama. Peristiwa ini disebut "hibridisasi". Karena perubahan yang terjadi adalah 1 orbital 2s dan 3 orbital 2p, maka disebut hibridisasi sp3. Bentuk molekul dari ikatan hibrida sp3 adalah tetrahedron.

  BEBERAPA BENTUK GEOMETRI IKATAN, ANTARA LAIN :


Jenis ikatan Jumlah ikatan maksimum Bentuk geometrik
sp 2 Linier
sp2 3 Segitiga datar
sp3 4 Tetrahedron
dsp3 5 Trigonal bipiramid
sp2d ; dsp2 4 Segiempat datar
d2sp3 ; sp3d2 6 Oktahedron

Beberapa Sifat Periodik Unsur-Unsur

1. Jari jari atom adalah jarak dari inti atom ke lintasan elektron terluar.


- Dalam satu perioda, dari kiri ke kanan jari jari atom berkurang.

- Dalam satu golongan, dari atas ke bawah jari-jari atom bertambah.

- Jari-jari atom netral lebih besar daripada jari-jari ion positifnya tetapi lebih kecil dari jari-jari ion negatifnya.

Contoh:
jari-jari atom Cl < jari-jari ion Cl-
jari-jari atom Ba > jari-jari ion Ba2+

2. Potensial ionisasi adalah energi yang diperlukan untuk melepaskan elektron yang paling lemah/luar dari atom suatu unsur atau ion dalam keadaan gas.


Dalam satu perioda, dari kiri ke kanan potensial ionisasi bertambah.

- Dalam satu golongan, dari atas ke bawah potensial ionisasi berkurang.
3. Affinitas elektron adalah besarnya energi yang dibebaskan pada saat atom suatu unsur dalam keadaan gas menerima elektron.


- Dalam satu perioda, dari kiri ke kanan affinitas elektron bertambah.

Dalam satu golongan, dari atas ke bawah affinitas elektron berkurang.
4.  Keelektronegatifan adalah kemampuan atom suatu unsur untuk menarik elektron ke arah intinya dan digunakan bersama.
 
SECARA DIAGRAMATIS SIFAT-SIFAT INI DAPAT DISAJIKAN SEBAGAI BERIKUT
1. Jari-jari atom
2. Sifat logam
3. Sifat elektropositif
4. Reduktor
5. Sifat basa/oksida basa

 
makin besar/kuat
 
1. Sifat elektronegatif
2. Oksidator
3. Potensial ionisasi
4. Affinitas elektron
5. Keelektronegatifan

 
Keterangan: tanda-tanda panah di atas mempunyai arti sebagai berikut
  ®  : artinya, dalam satu periode dari kiri ke kanan
¬   : artinya, dalam satu periode dari kanan ke kiri
¯  : artinya, dalam satu golongan dari atas ke bawah
á : artinya, dalam satu golongan dari bawah ke atas

Cara Penentuan Perioda Dan Golongan Suatu Unsur

1. Unsur dengan nomor atom 11, konfigurasinya : 1s2 2s2 2p6 3s1

- n = 3, berarti periode 3 (kulit M).
- elektron valensi (terluar) 3s sebanyak 1 elektron, berarti termasuk golongan IA.
 
2. Unsur Ga dengan nomor atom 31, konfigurasinya : 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p1

- n = 4, berarti perioda 4 (kulit N).
- elektronvalensi 4s2 4p1, berarti golongan IIIA.
 
3.  Unsur Sc dengan nomor atom 21, konfigurasinya : 1s2 2s2 2p6 3s2 3p6 4s2 3d1

- n = 4, berarti perioda 4 (kulit N).
- 3d1 4s2 berarti golongan IIIB.
 
4. Unsur Fe dengan nomor atom 26, konfigurasinya : 1s2 2s2 2p6 3s2 3p6 4s2 3d10

- n = 4, berarti perioda 4 (kulit N).
- 3d6 4s2 , berarti golongan VIII.

Hubungan Antara Golongan Dengan Konfigurasi Elektron

Unsur yang terletak pada satu golongan mempunyai sifat-sifat kimia yang mirip (hampir sama).
Unsur-unsur golongan A disebut golongan utama, sedangkan unsur-unsur golongan B disebut unsur transisi (peralihan), semua unsur transisi diberi simbol B kecuali untuk triade besi, paladium dan platina disebut "golongan VIII''.

- LAMBANG UNSUR-UNSUR GOLONGAN A
Lambang Golongan Nama Golongan Konfigurasi Elektron Orbital Terluar
I - A Alkali ns1
II - A Alkali tanah ns2
III - A Boron ns2 - np1
IV - A Karbon - Silikon ns2 - np2
V - A Nitogen - Posphor ns2 - np3
VI - A Oksigen ns2 - np4
VII - A Halogen ns2 - np5
VIII - A Gas mulia ns2 - np6
- LAMBANG UNSUR-UNSUR GOLONGAN B
Konfigurasi Elektron Lambang Golongan
(n - 1) d1 ns2 III - B
(n - 1) d2 ns2 IV - B
(n - 1) d3 ns2 V - B
(n - 1) d4 ns2 VI - B
(n - 1) d5 ns2 VII - B
(n - 1) d6-8 ns2 VIII
(n - 1) d9 ns2 I - B
(n - 1) d10 ns2 II - B
- GOLONGAN LANTANIDA DAN AKTINIDA, DIBERI LAMBANG
nS2 (n-2)f1-14
  Jika :
n = 6 adalah lantanida
n = 7 adalah aktinida

Sistem Periodik Unsur-Unsur

MACAM-MACAM SISTEM PERIODIK
1. TRIADE DOBEREINER DAN HUKUM OKTAF NEWLANDS TRIADE DOBEREINER
Dobereiner menemukan adanya beberapa kelompok tiga unsur yang memiliki kemiripan sifat, yang ada hubungannya dengan massa atom.

Contoh kelompok-kelompok triade: - Cl, Br dan I
- Ca, Sr dan Ba
- S, Se dan Te
HUKUM OKTAF NEWLANDS
Apabila unsur disusun berdasarkan kenaikan massa atom, maka unsur kesembilan mempunyai sifat-sifat yang mirip dengan unsur pertama, unsur kesepuluh mirip dengan unsur kedua dan seterusnya. Karena setelah unsur kedelapan sifat-sifatnya selalu terulang, maka dinamakan hukum Oktaf.
                                                                                                  
(+8)
Contoh: Li (nomor atom 3) akan mirip sifatnya dengan Na (nomor atom 11) 3 ®  11

 
2.
SISTEM PERIODIK MENDELEYEV
- Disusun berdasarkan massa atomnya dengan tidak mengabaikan sifat-sifat unsurnya.
- Lahirlah hukum periodik unsur yang menyatakan bahwa apabila unsur disusun menurut massa atomnya, maka unsur itu akan menunjukkan sifat-sifat yang berulang secara periodik.
- Beberapa keunggulan sistem periodik Mendeleyev, antara lain:

- Ada tempat bagi unsur transisi.

- Terdapat tempat-tempat kosong yang diramalkan akan diisi dengan unsur yang belum ditemukan pada waktu itu.
- Kekurangan sistem periodik ini:

-
Adanya empat pasal anomali, yaitu penyimpangan terhadap hukum perioditas yang disusun berdasarkan kenaikan massa atomnya. Keempat anomali itu adalah: Ar dengan K, Te dengan I, Co dengan Ni dan Th dengan Pa.

3. SISTEM PERIODIK BENTUK PANJANG
Sistem ini merupakan penyempurnaan dari gagasan Mendeleyev, disusun berdasarkan nomor atomnya.
Sistem ini terdiri dari dua deret, deret horisontal disebut periodik dan deret vertikal disebut golongan.

4. SISTEM PERIODIK DAN HUBUNGANNYA DENGAN KONFIGURASI ELEKTRON

A. HUBUNGAN ANTARA PERIODA DENGAN KONFIGURASI ELEKTRON

Dalam sistem periodik, perioda menunjukkan banyaknya kulit yang telah terisi elektron di dalam suatu atom.
Sehingga sesuai dengan banyaknya kulit yaitu K, L, M, N, O, P, Q maka sistem periodik mempunyai 7 perioda.

B. HUBUNGAN ANTARA GOLONGAN DENGAN KONFIGURASI ELEKTRON

C. CARA PENENTUAN PERIODA DAN GOLONGAN SUATU UNSUR

D. BEBERAPA SIFAT PERIODIK UNSUR-UNSUR

You can replace this text by going to "Layout" and then "Page Elements" section. Edit " About "

Video

Title

free counters
 
 

Blogger